Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction

نویسندگان

  • Yucheng Zhou
  • Yanhua Leng
  • Weijia Zhou
  • Jilin Huang
  • Mingwen Zhao
  • Jie Zhan
  • Chunhua Feng
  • Zhenghua Tang
  • Shaowei Chen
  • Hong Liu
چکیده

New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing 100083, China State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, China Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen and sulfur co-doped porous carbon derived from human hair as highly efficient metal-free electrocatalysts for hydrogen evolution reactions

Design and engineering of low-cost and high-efficiency electrocatalysts for hydrogen evolution reactions (HER) has attracted increasing interest in renewable energy research. Herein, a highly active and stable metal-free electrocatalyst, N and S co-doped porous carbon derived from human hair, was developed for HER for the first time, with an electrocatalytic performance comparable to that of st...

متن کامل

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocata...

متن کامل

Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution

Molybdenum carbide (Mo2C) has been considered as a promising non-noble-metal hydrogen evolution reaction (HER) electrocatalyst for future clean energy devices. In this work, we report a facile, green, low-cost and scalable method for the synthesis of a Mo2C-based HER electrocatalyst consisting of ultrafine Mo2C nanoparticles embedded within bacterial cellulosederived 3D N-doped carbon nanofiber...

متن کامل

Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction.

Exploring the role of surface hydrophilicity of non-precious metal N-doped carbon electrocatalysts in electrocatalysis is challenging. Herein we discover an ultra-hydrophilic non-precious carbon electrocatalyst, showing enhanced catalysis efficiency on both gravimetric and areal basis for oxygen reduction reaction due to a high dispersion of active centres.

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015